By Topic

Sparsity and Morphological Diversity in Blind Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bobin, J. ; DAPNIA/SEDI-SAP, Gif sur Yvette ; Starck, J.-L. ; Fadili, J. ; Moudden, Y.

Over the last few years, the development of multichannel sensors motivated interest in methods for the coherent processing of multivariate data. Some specific issues have already been addressed as testified by the wide literature on the so-called blind source separation (BSS) problem. In this context, as clearly emphasized by previous work, it is fundamental that the sources to be retrieved present some quantitatively measurable diversity. Recently, sparsity and morphological diversity have emerged as a novel and effective source of diversity for BSS. Here, we give some new and essential insights into the use of sparsity in source separation, and we outline the essential role of morphological diversity as being a source of diversity or contrast between the sources. This paper introduces a new BSS method coined generalized morphological component analysis (GMCA) that takes advantages of both morphological diversity and sparsity, using recent sparse overcomplete or redundant signal representations. GMCA is a fast and efficient BSS method. We present arguments and a discussion supporting the convergence of the GMCA algorithm. Numerical results in multivariate image and signal processing are given illustrating the good performance of GMCA and its robustness to noise.

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 11 )