By Topic

Electronics for the Pulsed Rubidium Clock: Design and Characterization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Calosso, C.E. ; Ist. Nazionale di Ricerca Metrologica, Torino ; Micalizio, S. ; Godone, A. ; Bertacco, E.K.
more authors

Pulsing the different operation phases of a vapor-cell clock (optical pumping, interrogation, and detection) has been recognized as one of the most effective techniques to reduce light shift and then to improve the stability perspectives of vapor cell clocks. However, in order to take full advantage of the pulsed scheme, a fast-gated electronics is required, the times involved being of the order of milliseconds. In this paper we describe the design and the implementation of the electronics that synchronizes the different phases of the clock operation, as well as of the electronics that is mainly devoted to the thermal stabilization of the clock physics package. We also report some characterization measurements, including a measurement of the clock frequency stability. In particular, in terms of Allan deviation, we measured a frequency stability of 1.2times10-12 tau-1/2 for averaging times up to tau = 105 s, a very interesting result by itself and also for a possible space application of such a clock.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:54 ,  Issue: 9 )