By Topic

Design Studtes of Two Possible Detector Blocks for High Resolution Positron Emission Tomography of the Brain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Eriksson, L. ; Department of Physics, University of Stockholm, and the Departments of Neuroradiology and Neurophysiology, Karolinska Hospital/Institute, Sweden ; Bohm, C. ; Kessel-berg, M. ; Holte, S.
more authors

Two possible detector designs for high resolution positron camera systems have been investigated. The goal is to achieve an instrument that can measure the whole brain with a spatial resolution of 5 mm FWHM in all directions. For both detectors BGO crystals are used, with the dimension 4.5*9.5*25 mm. One detector scheme utilizes the Anger principle for crystal identification with 16 crystals mounted on two dual PMT:s via a 3 mm light guide. The other detector scheme utilizes position sensitive PMT:s. The figures of merit for these two configurations are discussed in terms of high count rate capabilities and identification reliability.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:34 ,  Issue: 1 )