By Topic

Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We present a study of image features for cancer diagnosis and Gleason grading of the histological images of prostate. In diagnosis, the tissue image is classified into the tumor and nontumor classes. In Gleason grading, which characterizes tumor aggressiveness, the image is classified as containing a low- or high-grade tumor. The image sets used in this paper consisted of 367 and 268 color images for the diagnosis and Gleason grading problems, respectively, and were captured from representative areas of hematoxylin and eosin-stained tissue retrieved from tissue microarray cores or whole sections. The primary contribution of this paper is to aggregate color, texture, and morphometric cues at the global and histological object levels for classification. Features representing different visual cues were combined in a supervised learning framework. We compared the performance of Gaussian, -nearest neighbor, and support vector machine classifiers together with the sequential forward feature selection algorithm. On diagnosis, using a five-fold cross-validation estimate, an accuracy of 96.7% was obtained. On Gleason grading, the achieved accuracy of classification into low- and high-grade classes was 81.0%.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:26 ,  Issue: 10 )