Cart (Loading....) | Create Account
Close category search window
 

Solving the Register Allocation Problem for Embedded Systems Using a Hybrid Evolutionary Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Topcuoglu, H.R. ; Marmara Univ., Istanbul ; Demiroz, B. ; Kandemir, M.

Embedded systems are unique in the challenges they present to application programmers, such as power and memory space constraints. These characteristics make it imperative to design customized compiler passes. One of the important factors that shape runtime performance of a given embedded code is the register allocation phase of compilation. It is crucial to provide aggressive and sophisticated register allocators for embedded devices, where the excessive compilation time can be tolerated due to high demand on code quality. Failing to do a good job on allocating variables to registers (i.e., determining the set of variables to be stored in the limited number of registers) can have serious power, performance, and code size consequences. This paper explores the possibility of employing a hybrid evolutionary algorithm for register allocation problem in embedded systems. The proposed solution combines genetic algorithms with a local search technique. The algorithm exploits a novel, highly specialized crossover operator that takes into account domain-specific information. The results from our implementation based on synthetic benchmarks and routines that are extracted from well-known benchmark suites clearly show that the proposed approach is very successful in allocating registers to variables. In addition, our experimental evaluation also indicates that it outperforms a state-of-the-art register allocation heuristic based on graph coloring for most of the cases experimented.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.