By Topic

Classification With Ant Colony Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Martens, D. ; Katholieke Univ. Leuven, Leuven ; De Backer, M. ; Haesen, R. ; Vanthienen, J.
more authors

Ant colony optimization (ACO) can be applied to the data mining field to extract rule-based classifiers. The aim of this paper is twofold. On the one hand, we provide an overview of previous ant-based approaches to the classification task and compare them with state-of-the-art classification techniques, such as C4.5, RIPPER, and support vector machines in a benchmark study. On the other hand, a new ant-based classification technique is proposed, named AntMiner+. The key differences between the proposed AntMiner+ and previous AntMiner versions are the usage of the better performing MAX-MIN ant system, a clearly defined and augmented environment for the ants to walk through, with the inclusion of the class variable to handle multiclass problems, and the ability to include interval rules in the rule list. Furthermore, the commonly encountered problem in ACO of setting system parameters is dealt with in an automated, dynamic manner. Our benchmarking experiments show an AntMiner+ accuracy that is superior to that obtained by the other AntMiner versions, and competitive or better than the results achieved by the compared classification techniques.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )