By Topic

Evolving Problems to Learn About Particle Swarm Optimizers and Other Search Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Langdon, W.B. ; Univ. of Essex, Colchester ; Poli, R.

We use evolutionary computation (EC) to automatically find problems which demonstrate the strength and weaknesses of modern search heuristics. In particular, we analyze particle swarm optimization (PSO), differential evolution (DE), and covariance matrix adaptation-evolution strategy (CMA-ES). Each evolutionary algorithm is contrasted with the others and with a robust nonstochastic gradient follower (i.e., a hill climber) based on Newton-Raphson. The evolved benchmark problems yield insights into the operation of PSOs, illustrate benefits and drawbacks of different population sizes, velocity limits, and constriction (friction) coefficients. The fitness landscapes made by genetic programming reveal new swarm phenomena, such as deception, thereby explaining how they work and allowing us to devise better extended particle swarm systems. The method could be applied to any type of optimizer.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 5 )