Cart (Loading....) | Create Account
Close category search window

Improving the UWB Pulseshaper Design Using Nonconstant Upper Bounds in Semidefinite Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

A critical obstacle for ultra-wideband (UWB) communications is conformity to restrictions set on the allowed interference to other wireless devices. To this end, UWB signals have to comply with stringent constraints on their emitted power, defined by the Federal Communications Commission spectral mask. Different UWB pulseshaper designs have been studied to meet the spectral mask, out of which an approach based on digital finite impulse response filter design via semidefinite programming has stood out. However, so far this approach has assumed an ideal basic analog pulse to use piece-wise constant constraints for the digital filter design. Since any practical analog pulse does not have a flat spectrum, using piece-wise constant constraints leads to considerable power loss. Avoiding such a loss has motivated us to implement the exact constraints through nonconstant piece-wise continuous bounds. Relative to the design assuming an ideal basic analog pulse, our design examples show that the transmission power can be enhanced considerably while obeying the spectral mask. Such an improvement comes with no extra cost of implementation complexity.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:1 ,  Issue: 3 )

Date of Publication:

Oct. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.