By Topic

System Reliability in the Presence of Common-Cause Failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chae, Kyung C. ; University of New Brunswick, Fredericton ; Clark, Gordon M.

This paper presents a method for calculating the reliability of a system depicted by a reliability block diagram, with identically distributed components, in the presence of common-cause failures. To represent common-cause failures, we use the Marshall & Olkin formulation of the multivariate exponential distribution. That is, the components are subject to failure by Poisson failure processes that govern simultaneous failure of a speciflc subset of the components. The method for calculating system relability requires that a procedure exist for determining system reliability from component reliabilities under the statistically-independent-component assumption. The paper includes several examples to illustrate the method and compares the reliability of a system with common-cause failures to a system with statistically-independent components. The examples clearly show that common-cause failure processes as modeled in this paper materially affect system reliability. However, inclusion of common-cause failure processes in the system analysis introduces the problem of estimating the rates of simultaneous failure for multiple components in addition to their individual failure rates.

Published in:

Reliability, IEEE Transactions on  (Volume:35 ,  Issue: 1 )