By Topic

Software Reliability Growth Models with Testing-Effort

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yamada, Shigeru ; Okayama University of Science, Okayama ; Ohtera, Hiroshi ; Narihisa, H.

Many software reliability growth models have been proposed in the past decade. Those models tacitly assume that testing-effort expenditures are constant throughout software testing. This paper develops realistic software reliability growth models incorporating the effect of testing-effort. The software error detection phenomenon in software testing is modeled by a nonhomogeneous Poisson process. The software reliability assessment measures and the estimation methods of parameters are investigated. Testing-effort expenditures are described by exponential and Rayleigh curves. Least-squares estimators and maximum likelihood estimators are used for the reliability growth parameters. The software reliability data analyses use actual data. The software reliability growth models with testing-effort can consider the relationship between the software reliability growth and the effect of testing-effort. Thus, the proposed models will enable us to evaluate software reliability more realistically.

Published in:

Reliability, IEEE Transactions on  (Volume:35 ,  Issue: 1 )