By Topic

Lessons Learned and Results from Applying Data-Driven Cost Estimation to Industrial Data Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Heidrich, J. ; Fraunhofer IESE, Kaiserslautern ; Trendowicz, A. ; Münch, J. ; Ishigai, Y.
more authors

The increasing availability of cost-relevant data in industry allows companies to apply data-intensive estimation methods. However, available data are often inconsistent, invalid, or incomplete, so that most of the existing data-intensive estimation methods cannot be applied. Only few estimation methods can deal with imperfect data to a certain extent (e.g., optimized set reduction, OSR). Results from evaluating these methods in practical environments are rare. This article describes a case study on the application of OSR at Toshiba information systems (Japan) corporation. An important result of the case study is that estimation accuracy significantly varies with the data sets used and the way of preprocessing these data. The study supports current results in the area of quantitative cost estimation and clearly illustrates typical problems. Experiences, lessons learned, and recommendations with respect to data preprocessing and data-intensive cost estimation in general are presented.

Published in:

Quality of Information and Communications Technology, 2007. QUATIC 2007. 6th International Conference on the

Date of Conference:

12-14 Sept. 2007