Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Damping Subsynchronous Oscillations in Power Systems Using a Static Phase-Shifter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iravani, M.R. ; Electrical Engineering Department the University of Manitoba Winnipeg, Canada R3T 2N2 ; Mathur, R.M.

A method for suppressing Subsynchronous Resonance (SSR) in large turbine-generators, as a result of series capacitor compensation of power systems, is presented. This method utilizes a thyristor-controlled phase-shifter to modulate the generator active power by injecting a quadrature phase voltage in the system. The rotor speed deviation from the synchronous speed is used as the control signal. An eigenvalue analysis and the complex torque coefficient methods are used to demonstrate the technical feasibility of a static phase-shifter for damping SSR. The analytical results are verified by a detailed digital computer study on the first IEEE benchmark for SSR studies, using the BPA's Electro-Magnetic Transients Program (EMTP). The simulation results indicate that injection of 2.4% of the system phase voltage in 4 steps of 0.6%, can suppress all torsional modes of the First IEEE benchmark model.

Published in:

Power Systems, IEEE Transactions on  (Volume:1 ,  Issue: 2 )