By Topic

System Design of Fast Pet Scanners Utilizing Time-of-Flight

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mullani, Nizar A. ; University of Texas Health Science Center, Houston, TX ; Ficke, David C. ; Hartz, Ross ; Markham, Joanne
more authors

Recent advances in PET designs have shown that a gain in signal-to-noise ratio can be expected by incorporating time-of-flight data in positron emission tomography over the conventional PET mode. It has also been shown that cesium fluoride (CsF) offers the potential of faster timing and high detection efficiency which would be required for a clinical scanner utilizing time-of-flight information. Our research with CsF and the results of a feasibility study of time-off-light positron emission tomography reconstruction have shown that, indeed, a significant improvement in image quality results from such an approach and that coincidence resolving times of less than 500 psec FWHM are easily achievable with CsF detectors. However, the design of fast tomographic systems with multiple detectors which maintain this fast coincidence timing poses a challenging technical problem. The solution to this problem requires a departure from the conventional mode of PET designs to a fast on-line microprocessor based system which is capable of compressing and correcting the data for timing differences, normalization and image function. Such a system is described in this paper and its advantages and disadvantages are discussed.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:28 ,  Issue: 1 )