By Topic

Radiation-Induced Charge Transport and Charge Buildup in SiO2 Films at Low Temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. R. Srour ; Northrop Research and Technology Center Hawthorne, California 90250 ; S. Othmer ; O. L. Curtis ; K. Y. Chiu

Studies of the temporal, temperature, and electricfield dependences of radiation-induced charge transport have been performed for radiation-hardened SiO2 films. At room temperature for high applied fields, nearly all electrons and holes generated in the oxide by a pulse of ionizing radiation (5-keV electrons) drift to the interfaces, whereas at low temperatures only electrons contribute to observed transport for relatively low fields. Below ~130°K at high fields, field-induced emission of trapped holes occurs, giving rise to collection within seconds of a significant fraction of the total number of holes generated. The present hole transport data are accounted for quite well in terms of a multiple-trapping model with a spread in trap levels ranging from ~0.3 to ~0.5 eV from the valence band. Comparison with the stochastic hopping transport model is made and that model is found to be less satisfactory in explaining these data. Charge buildup was examined in a Co60 environment and it is demonstrated that oxides exhibiting radiation tolerance at room temperature display severe radiation-induced changes at 77°K. It is also demonstrated that low-temperature charge buildup problems can be alleviated either by employing an ion-implanted oxide or by applying a relatively high field to the oxide during irradiation.

Published in:

IEEE Transactions on Nuclear Science  (Volume:23 ,  Issue: 6 )