By Topic

A Maximum Likelihood Approach to Emission Image Reconstruction from Projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. J. Rockmore ; Department of Electrical Engineering Stanford University Stanford, California 94305 ; Albert Macovski

The stochastic nature of the measurements used for image reconstruction from projections has largely been ignored in the past. If taken into account, the stochastic nature has been used to calculate the performance of algorithms which were developed independent of probabilistic considerations. This paper utilizes the knowledge of the probability density function of the measurements from the outset, and derives a reconstruction scheme which is optimal in the maximum likelihood sense. This algorithm is shown to yield an image which is unbiased -- that is, on the average it equals the object being reconstructed -- and which has the minimum variance of any estimator using the same measurements. As such, when operated in a stochastic environment, it will perform better than any current reconstruction technique, where the performance measures are the bias and viariance.

Published in:

IEEE Transactions on Nuclear Science  (Volume:23 ,  Issue: 4 )