By Topic

Process Optimization of Radiation-Hardened CMOS Integrated Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Derbenwick, G.F. ; Sandia Laboratories, Albuquerque, New Mexico 87115 ; Gregory, B.L.

The effects of processing steps on the radiation hardness of MOS devices have been systematically investigated. Quantitative relationships between the radiation-induced voltage shifts and processing parameters have been determined, where possible. Using the results of process optimization, a controlled baseline fabrication process for aluminum-gate CMOS has been defined. CMOS inverters which can survive radiation exposures well in excess of 108 rads (Si) have been fabricated. Restrictions that the observed physical dependences place upon possible models for the traps responsible for radiation-induced charging in SiO2 are discussed.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:22 ,  Issue: 6 )