By Topic

Transient Radiation Response of Complementary-Symmetry MOS Integrated Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Complementary-symmetry MOS (CMOS) integrated circuits were subjected to a sub-microsecond burst of high intensity ionizing radiation using 10-MeV electrons from a LINAC. The results show that, at peak doserate values of less than 8 × 108 rads (Si)/s, the transient change in output voltage of a CMOS inverter is small and can be attributed simply to the net junction photocurrent flowing at the output node. At dose rates in excess of 8 × 108 rads (Si)/s, however, a new type of response comes into play and the transient change in output voltage becomes very large, approaching the operating voltage. In some instances, this change can result in a non-destructive temporary latch-up condition. The results suggest that this condition is caused by a parasitic effect, namely the interaction of the P-well, the source-drain diffusions, and the protection diodes that constitute a four layer structure.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:16 ,  Issue: 6 )