By Topic

Wave Propagation in a Coaxial Glow Discharge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Miller, E.K. ; The University of Michigan Radiation Laboratory Ann Arbor, Michigan ; Olte, A.

The propagation of electromagnetic radiation from 500 to 4200 Mc in a coaxial cage transmission line passing through a cylindrical discharge chamber is investigated experimentally. Measurements were conducted in argon, helium, and nitrogen gas at pressures between 0.09 mm Hg and 2 mm Hg for a discharge-electromagnetic radiation interaction length of 30.48 cm. The results are compared with theory using a Lorentzian model to describe the electron motion in the presence of the RF field. A graphical method for determining the plasma frequency and electron momentum transfer collision frequency from measurements of the power transmission coefficient at two different radio frequencies is discussed. A comparison is made between the plasma frequency determined by this method and that obtained by the use of a cylindrical Langmuir probe. The electron momentum transfer collision probability is calculated from the RF and probe data.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:10 ,  Issue: 1 )