By Topic

An Example of Design for Minimum Total Cost, Counter-Flow Heat Exchangers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Many types of equipment have two costs: the cost of the work potential dissipated by the equipment in operation, and its initial capital cost. The correct design minimizes the total cost. A mathematical technique has recently been developed for obtaining algebraic expressions for the minimum cost, as well as for the optimum design parameters in terms of the physical parameters of the system and of various unit costs, such as electric power and fuel costs. The present paper illustrates this mathematical optimization technique through its application to the design of a counter-flow heat exchanger. Algebraic expressions are obtained for the following design parameters: flow velocities and surface area per unit rate of heat exchanged. This mathematical technique is equally applicable to design problems where properties other than cost are to be minimized, such as weight.

Published in:

Military Electronics, IEEE Transactions on  (Volume:8 ,  Issue: 2 )