Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A Simple Evaporative System for Space-Environmental Thermal Control of Electronic Components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
O'Neill, R.F. ; General Dynamics/Astronautics San Diego, California

A passive mass transfer thermodynamic device employing the latent heat of vaporization of an enclosed liquid is described as a method of precise thermal control for single, low-mass, high-energy electronic components. This device has particular application for electronic components having high power density which are incorporated in spacecraft electronic systems relying otherwise on radiant exchange with the environment as a means of space-environmental thermal control. Specific areas of interest growing out of the design requirements for such a mass transfer device are 1) liquid ullage control under zero-g conditions, precluding loss of liquid due to blow-out, and 2) favorable exploitation of liquid adsorption and surface phenomena in maintaining a continuous heat-sinking effect. The latter effect is demonstrated by data obtained in operating appropriately instrumented thermal control test articles under one-g conditions in vacuum and non-vacuum environments. Satisfactory heat-sinking is demonstrated over a range of energy inputs. Application of the system methodology and capabilities to the problem of space-environmental thermal control is evaluated and summarized.

Published in:

Aerospace, IEEE Transactions on  (Volume:AS-3 ,  Issue: 2 )