By Topic

The Algorithm of Neural Networks on the Initial Value Problems in Ordinary Differential Equations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xu Li-ying ; Changsha Univ. of Sci. & Technol., Changsha ; Wen Hui ; Zeng Zhe-zhao

A new method for solving initial value problems in ordinary differential equations (ODES) is proposed in this paper. The algorithm of neural networks based on the cosine basis functions is studied in detail. The convergence theorem of neural networks algorithm is given and proved. The algorithm is validated by the simulation examples of ODES. The results show the proposed approach is more precise than modified Euler method and Heun's method.

Published in:

Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on

Date of Conference:

23-25 May 2007