Cart (Loading....) | Create Account
Close category search window
 

Matrix-Addressable Micropixellated InGaN Light-Emitting Diodes With Uniform Emission and Increased Light Output

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Gong, Z. ; Strathclyde Univ., Glasgow ; Zhang, H.X. ; Gu, E. ; Griffin, C.
more authors

Micropixellated InGaN light-emitting diodes (micro- LEDs) have a wide number of potential applications in areas including microdisplays, fluorescence-based assays and microscopy, and cell micromanipulation. Here, we present fabrication and performance details of matrix-addressable micro-LED devices which show significant improvements over their earlier counterparts. Devices with 64 x 64 micropixel elements, each of them having a 16-mum-diameter emission aperture on a 50-mum pitch, have been fabricated at blue (470 nm), green (510 nm), and UV (370 nm) wavelengths, respectively. Importantly, we have adopted a scheme of running n-metal tracks adjacent to each n-GaN mesa, so that resistance variation between the devices is reduced to below 8%, in contrast to the earlier fivefold resistance variation encountered. We have also made improvements to the spreading-layer formation scheme, resulting in significant increases in output power per element, improved current handling, and reduced turn-on voltages. These devices have been combined with a computer- driven programmable driver interface operating in constant- current mode, and representative microdisplay outputs are presented.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 10 )

Date of Publication:

Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.