Cart (Loading....) | Create Account
Close category search window

Structure, Stability, and Spectra of Lateral Modes of a Broad-Area Semiconductor Laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Blaaberg, S. ; Tech. Univ. of Denmark, Lyngby ; Petersen, P.M. ; Tromborg, B.

We present a theoretical analysis of the lateral modes of a broad-area semiconductor laser. The structure of the modes are classified into four categories and the modes are traced in the frequency versus pump rate diagram. It is shown how the branches of the frequency tuning curves for the different types of modes are interconnected and how the intensity profiles develop along the branches. The main result of the paper is the presentation of a small-signal stability analysis which identifies the saddle-node and Hopf bifurcation points on the mode tuning curves. For stable modes we derive expressions for small-signal noise and modulation spectra and present numerical examples of the spectra.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.