By Topic

A Digital Envelope Modulator for a WLAN OFDM Polar Transmitter in 90 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van Zeijl Paul, T.M. ; Philips Res., Eindhoven ; Collados, M.

A digital envelope modulator as part of a polar transmitter architecture for the 802.11a/g WLAN OFDM standards is investigated. The digital envelope modulator is quite similar to a state-of-the-art DAC design, but now it has been optimized to deal with envelope signals. A thermometer-coded envelope DAC has been implemented in a 90 nm digital CMOS process. Measurements of a test chip show the digital envelope modulator to reach an OFDM output power of 5 dBm for 54 Mb/s using 64 QAM at 2.45 GHz and fulfilling EVM specifications and in-band spectral mask requirements using just 12.7 mW from a 1.2 V supply. Combining the digital envelope modulator with an off-chip power amplifier gives an output power of 20.4 dBm, while fulfilling EVM specifications and in-band spectral mask requirements. The output power of the presented envelope DAC can be increased in a re-design by scaling device sizes. The envelope DAC is a key component in a software-defined-radio transmitter.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 10 )
RFIC Virtual Journal, IEEE
RFID Virtual Journal, IEEE