By Topic

A Power-Efficient Clock and Data Recovery Circuit in 0.18 μm CMOS Technology for Multi-Channel Short-Haul Optical Data Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tajalli, A. ; Swiss Fed. Inst. of Technol. (EPFL), Lausanne ; Muller, P. ; Leblebici, Y.

This paper studies the specifications of gated-oscillator-based clock and data recovery circuits (GO CDRs) designed for short haul optical data communication systems. Jitter tolerance (JTOL) and frequency tolerance (FTOL) are analyzed and modeled as two main design parameters for the proposed topology to explore the main tradeoffs in design of low-power GO CDRs. Based on this approach, a top-down design methodology is presented to implement a low-power CDR unit while the JTOL and FTOL requirements of the system are simultaneously satisfied. Using standard digital 0.18 mum CMOS technology, an 8-channel CDR system has been realized consuming 4.2 mW/Gb/s/channel and occupying a silicon area of 0.045 mm2 /channel, with the total aggregate data bit rate of 20 Gb/s. The measured FTOL is plusmn3.5% and no error was detected for a 231-1 pseudo-random bit stream (PRBS) input data for 30 minutes, meaning that the bit error rate (BER) is smaller than 10-12. Meanwhile, a shared-PLL (phase-locked loop) with a wide tuning range and compensated loop gain has been introduced to tune the center frequency of all CDR channels to the desired value.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 10 )