By Topic

Impact of Preferential P-Diffusion Along the Grain Boundaries on Fine-Grained Polysilicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Carnel, L. ; Interuniv. Microelectron. Center, Leuven ; Gordon, I. ; Van Gestel, D. ; Vanhaeren, D.
more authors

Thin-film polysilicon solar cells are a promising low-cost alternative for bulk silicon solar cells due to their reduced material thickness. Recently, we showed that the use of an amorphous silicon/polycrystalline silicon heterojunction emitter instead of a diffused homojunction emitter led to a boost in the open-circuit voltage by 90 mV. Now, we present a full evidence that shows that this improvement is related to the absence of dopant smearing along the grain boundaries. By using scanning spreading resistance microscopy, we found an enlargement of the junction area by a factor of five in case of a homojunction. The tips of the dopant spikes represent lowly doped areas with an enhanced recombination.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 10 )