Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Single-Channel Speech Separation Using Soft Mask Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Radfar, M.H. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, ON ; Dansereau, R.M.

We present an approach for separating two speech signals when only one single recording of their linear mixture is available. For this purpose, we derive a filter, which we call the soft mask filter, using minimum mean square error (MMSE) estimation of the log spectral vectors of sources given the mixture's log spectral vectors. The soft mask filter's parameters are estimated using the mean and variance of the underlying sources which are modeled using the Gaussian composite source modeling (CSM) approach. It is also shown that the binary mask filter which has been empirically and extensively used in single-channel speech separation techniques is, in fact, a simplified form of the soft mask filter. The soft mask filtering technique is compared with the binary mask and Wiener filtering approaches when the input consists of male+male, female+female, and male+female mixtures. The experimental results in terms of signal-to-noise ratio (SNR) and segmental SNR show that soft mask filtering outperforms binary mask and Wiener filtering.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 8 )