By Topic

A Rapid and Automatic MRF-Based Clustering Method for SAR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xia, G.-S. ; Wuhan Univ., Wuhan ; Chu He ; Hong Sun

This letter presents a precise and rapid clustering method for synthetic aperture radar (SAR) images by embedding a Markov random field (MRF) model in the clustering space and using graph cuts (GCs) to search the optimal clusters for the data. The proposed method is optimal in the sense of maximum a posteriori (MAP). It automatically works in a two-loop way: an outer loop and an inner loop. The outer loop determines the cluster number using a pseudolikelihood information criterion based on MRF modeling, and the inner loop is designed in a ldquohardrdquo membership expectation-maximization (EM) style: in the E step, with fixed parameters, the optimal data clusters are rapidly searched under the criterion of MAP by the GC; and in the M step, the parameters are estimated using current data clusters as ldquohardrdquo membership obtained in the E step. The two steps are iterated until the inner loop converges. Experiments on both simulated and real SAR images test the performance of the algorithm.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )