By Topic

Effect of Long Waves on Ku-Band Ocean Radar Backscatter at Low Incidence Angles Using TRMM and Altimeter Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tran, N. ; Collecte Localisation Satellites, St-Agne ; Chapron, B. ; Vandemark, D.

This letter uses a large ocean satellite data set to document relationships between Ku-band radar backscatter (sigmao) of the sea surface, near-surface wind speed (U), and ocean wave height (SWH). The observations come from satellite crossovers of the Tropical Rainfall Mapping Mission (TRMM) Precipitation Radar (PR) and two satellite altimeters, namely: 1) Jason-1 and 2) ENVISAT. At these nodes, we obtain TRMM clear-air normalized radar cross-section data along with coincident altimeter-derived significant wave height. Wind speed estimates come from the European Centre for Medium-Range Weather Forecast. TRMM PR is the first satellite to measure low incidence Ku-band ocean backscatter at a continuum of incidence angles from 0deg to 18deg. This letter utilizes these global ocean data to assess hypotheses developed in past theoretical and field studies.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )