By Topic

On the Performance Evaluation of Pan-Sharpening Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qian Du ; Mississippi State Univ., Mississippi ; Younan, N.H. ; King, R. ; Shah, V.P.

The limitations of the currently existing pan-sharpening quality indices are analyzed: the absolute difference between pixel values, mean shifting, and dynamic range change is frequently used as spatial fidelity measurement, but they may not correlate well with the actual change of image content; and spectral angle is a widely used metric for spectral fidelity, but the spectral angle remains the same if two vectors are multiplied by two individual constants, which means the average spectral angle between two multispectal images is zero even if pixel vectors are multiplied by different constants. Therefore, it is important to evaluate the quality of a pan-sharpened image under a task of its practical use and to assess spectral fidelity in the context of an image. In this letter, three data analysis techniques in linear unmixing, detection, and classification are applied to evaluate spectral information within a spatial scene context. It is demonstrated that those old but simplest approaches, i.e., Brovey and multiplicative (or after straightforward adjustment) methods, can generally yield acceptable data analysis results. Thus, it is necessary to consider the tradeoff between computational complexity, actual improvement on application, and hardware implementation when developing a pan-sharpening method.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )