By Topic

Modified Fisher's Linear Discriminant Analysis for Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Qian Du ; Mississippi State Univ., Starkville

In this letter, we present a modified Fisher's linear discriminant analysis (MFLDA) for dimension reduction in hyperspectral remote sensing imagery. The basic idea of the Fisher's linear discriminant analysis (FLDA) is to design an optimal transform, which can maximize the ratio of between-class to within-class scatter matrices so that the classes can be well separated in the low-dimensional space. The practical difficulty of applying FLDA to hyperspectral images includes the unavailability of enough training samples and unknown information for all the classes present. So the original FLDA is modified to avoid the requirements of training samples and complete class knowledge. The MFLDA requires the desired class signatures only. The classification result using the MFLDA-transformed data shows that the desired class information is well preserved and they can be easily separated in the low-dimensional space.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )