By Topic

The Use of the Hopfield Neural Network to Measure Sea-Surface Velocities From Satellite Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cote, S. ; Bentley Syst., Inc., Quebec ; Tatnall, A.R.L.

The knowledge of ocean surface circulation is of major importance for many applications, including the understanding of global climate, resources exploitation, and containment of chemical spills. In this letter, sea-surface feature tracking based on the Hopfield neural network (NN) is described. The method is based on the minimization of an energy function that represents the feature tracking problem. A Hopfield NN is used to merge cross-correlation information with prior knowledge of sea-surface flows and image contextual information. It has been tested on real satellite images. A set of five Advanced Very High Resolution Radiometer thermal images of the coastal zone of California, along with a data set of coincident surface drifters positions, was used to test the method. Results of the new analysis are compared with in situ data and previous results using other techniques. The method can be used on various kinds of images for tracking and also find other applications in image registration and pattern recognition.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )