By Topic

Feature Selection and Classification of Hyperspectral Images With Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Archibald, R. ; Oak Ridge Nat. Lab., Oak Ridge ; Fann, G.

Hyperspectral images consist of large number of bands which require sophisticated analysis to extract. One approach to reduce computational cost, information representation, and accelerate knowledge discovery is to eliminate bands that do not add value to the classification and analysis method which is being applied. In particular, algorithms that perform band elimination should be designed to take advantage of the structure of the classification method used. This letter introduces an embedded-feature-selection (EFS) algorithm that is tailored to operate with support vector machines (SVMs) to perform band selection and classification simultaneously. We have successfully applied this algorithm to determine a reasonable subset of bands without any user-defined stopping criteria on some sample AVIRIS images; a problem occurs in benchmarking recursive-feature-elimination methods for the SVMs.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:4 ,  Issue: 4 )