By Topic

Laser Triggering through Fiber Optics of a Low Jitter Spark Gap

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

An optical filter is employed to transport a 15-ns light pulse from a high power ruby laser for precise triggering of a gas filed high voltage spark gap. The maximum power density that can be transmitted by the fiber is limited to 6 × 1012 W/m2 above which laser induced damage occurs on the fiber entrance face. The overall throughput efficiency of the optical system was measured as 62 percent. Results are presented for the switching delay time and associated jitter for various mixtures of A and N2 gas, and as a function of the voltage across a pulse-charged Blumlein generator gap. Pulse charging of the Blumlein generator was accomplished by a three-stage Marx generator, resulting in output voltages up to 250 kV. It was conclusively demonstrated that an optical fiber will transport a sufficiently intense laser pulse to evince subnanosecond jitter in the triggering of a pressurized gas switch under the conditions studied.

Published in:

Plasma Science, IEEE Transactions on  (Volume:8 ,  Issue: 3 )