Cart (Loading....) | Create Account
Close category search window
 

The DC Arc in a Supersonic Nozzle Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chan, S.K. ; Department of Mechanical Engineering University of Hong Kong Pokfulam Road, Hong Kong ; Fang, M.T.C. ; Cowley, M.D.

The boundary layer integral method at its second level of approximation has been used to study the DC arc in a supersonic nozzle flow. It is shown that with the inclusion of the arc momentum balance, the critical point of the flow is, generally, not the sonic point of the external flow. The speed, at which a disturbance propagates relative to the external flow, is in general supersonic and is dependent on the arc conditions. The arc model is capable of predicting the axial electric field, the arc size and the axial pressure distribution as a function of current. For affinely related nozzles, the solution is determined by a parameter N, which is related to zt, the stagnation condition and the nominal current density at the throat (I/At). Numerical results are given for a particular nozzle shape although the method of analysis is general. Practical implications as regards nozzle design for a gas blast circuit breaker are briefly discussed.

Published in:

Plasma Science, IEEE Transactions on  (Volume:6 ,  Issue: 4 )

Date of Publication:

Dec. 1978

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.