By Topic

Effects of Applied DC Radial Electric Fields on Particle Transport in a Bumpy Torus Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Reece Roth, J. ; Lewis Research Center Cleveland, Ohio 44135

The toroidal ring of plasma contained in the NASA Lewis Bumpy Torus may be biased to positive or negative potentials approaching 50 kilovolts by applying DC voltage to twelve or fewer midplane electrode rings. The electric fields, which are responsible for raising the ions to high energies by ExB/B2 drift, then point radially outward or inward. The profiles of plasma number density are observed to be flat or triangular across the plasma diameter. The absence of a second derivative in the density profile, combined with the flat electron temperature profiles which are observed, implies that the radial transport processes are not diffusional in nature and are dominated by the strong radial electric fields which are applied to the plasma. Evidence from a paired comparison test shows that the plasma number density and confinement time can increase more than an order of magnitude if the electric field acting along the minor radius of the toroidal plasma points inward, relative to the values observed when the electric field points radially outward. Some characteristic data taken under nonoptimized conditions yielded the highest plasma number density (2.7 × 1011/cc on axis) and the longest particle containment times (1.9 milliseconds) observed so far in this experiment.

Published in:

Plasma Science, IEEE Transactions on  (Volume:6 ,  Issue: 2 )