By Topic

Numerical Simulation of Autoresonant Ion Acceleration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Godfrey, B.B. ; University of California Los Alamos Scientific Laboratory Theoretical Division Los Alamos, New Mexico 87545

Computational and analytic studies of the Autoresonant Acceleration proposal for collective ion acceleration are presented. Linear theory is reviewed, the electrostatic well depth is estimated nonlinearly, and an electron beam envelope equation is derived and solved. Two-dimensional numerical simulation results are given. Together, these calcualtions demonstrate unneutralized electron beam equilibrium in a diverging magnetic guide field, the behaviour of large amplitude slow cyclotron waves in the beam, and the acceleration of test ions over short distances in the wave troughs. In addition, the computer simulations point up the need for improved understanding of the linear theory of radially inhomogeneous noneutral beams and for methods of suppressing radial modulation at the diode-waveguide interface.

Published in:

Plasma Science, IEEE Transactions on  (Volume:5 ,  Issue: 4 )