By Topic

Vacuum Arc Anode Phenomena

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
H. Craig Miller ; General Electric Company Neutron Devices Department St Petersburg, Florida 33733

This paper presents a brief review of anode phenomena in vacuum arcs. It discusses in succession the transition of the arc into the anode spot mode; the temperature of the anode before, during, and after formation of an anode spot; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition, indeed a combination of the two is a common cause of anode spot formation.

Published in:

IEEE Transactions on Plasma Science  (Volume:5 ,  Issue: 3 )