By Topic

Relativistic Linear Theory in the Absence of External Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Godfrey, B.B. ; Los Alamos Scientific Laboratory University of California Theoretical Division Los Alamos, New Mexico 87544 ; Newberger, Barry S. ; Taggart, Keith A.

The dielectric tensor for a multi-component, homogeneous, field-free relativistic plasma is derived in manifestly covariant form. From the dielectric tensor, linear dispersion relations are obtained explicitly when each component of the plasma is isotropic in its rest frame. If the components are relativistic Maxwellians, these dispersion relations are expressible in terms of the relativistic plasma dispersion function. Special attention is given to the Weible and two-stream instabilities and to the normal modes of a quiescent, hot electron gas. For the last case the dispersion relations are solved numerically and compared against computer simulation data. An appendix applies the formalism to cold plasmas.

Published in:

Plasma Science, IEEE Transactions on  (Volume:3 ,  Issue: 2 )