By Topic

The Application of a Plasma Erosion Opening Switch to a Nanosecond Generator at the Power Level of 1010 W

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper is devoted to experimental studies of a short-pulse (80 ns) inductive system with a coaxial plasma erosion opening switch (PEOS), operating at the 2-5 × 1010 W level. Scalings of the PEOS and ion diode characteristics with different parameters (PEOS plasma density and velocity, PEOS electrode geometry, load impedance, type and strength of an external magnetic field) were carried out. It was seen that for the most efficient energy and power switching to the load by the PEOS, the following conditions are preferable: high velocity and low density of the plasma flow, negative polarity of the inner PEOS electrode, coincidence of the switch current and injected plasma flow directions, the absence of an external magnetic field, and the presence of an additional self-field in the PEOS region. Power enhancement of a factor of 3 and pulse shortening by a factor of 2 were obtained under optimal conditions.

Published in:

Plasma Science, IEEE Transactions on  (Volume:15 ,  Issue: 6 )