By Topic

Characteristics of Macroparticle Emission from a High-Current-Density Multi-Cathode Spot Vacuum Arc

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Macroparticle mass transport, size distribution, and spatial distribution were studied in a 6.5-MA/M2 25-ms Cu multi-cathode spot (MCS) vacuum arc. The macroparticle erosion rate was determined to be 105 ¿g/C, and together with ionic emission, accounted for most of the cathodic erosion. The number of macroparticles emitted decreased exponentially with macroparticle diameter, with 20-80-¿m macroparticles carrying the bulk of the mass transport. Macroparticles are emitted preferentially at an angle of 20° with respect to the cathode surface. In comparison to previous investigations, higher macroparticle erosion rates, a larger proportion of large macroparticles, and a higher emission angle are observed, and the differences are attributed to the large current density used in the present experiment.

Published in:

Plasma Science, IEEE Transactions on  (Volume:15 ,  Issue: 5 )