By Topic

Laser-Induced Current Switching Observed in the Discharge Media of CF2Cl2-N2 and CH3Cl-N2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Switchings of discharge current induced by ArF and KrF laser pulses in the discharge media of CF2Cl2-N2 and CH3Cl-N2 were investigated using a negative point-to-plane discharge apparatus. The electron attachment rate constants of CF2Cl2 in buffer gases of N2 and Ar were measured by a parallel-plate drift-tube apparatus at various E/N, from which the dominant negative ions in the discharge media were inferred. The conductivity of the discharge medium is enhanced upon laser irradiation due to conduction electrons being produced from photoelectron-detachment of Cl-. From the dependence of the enhanced current on laser power, the photodetachment cross sections of Cl- in a given discharge condition were derived to be 2.5 × 10-17 cm2 at 193 nm and 1.0 × 10-17 cm2 at 248 nm. After the current enhancement, the current was greatly reduced as was observed in the discharge medium of CF2Cl2-N2, but not in CH3Cl-N2. The mechanism for the optically induced reduction of discharge current is discussed.

Published in:

Plasma Science, IEEE Transactions on  (Volume:15 ,  Issue: 4 )