Cart (Loading....) | Create Account
Close category search window
 

Beat Wave Generation of Plasma Waves for Particle Acceleration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The space-time evolution of beat wave generation is studied analytically and numerically. Electromagnetic cascading, collisional damping and relativistic frequency shift of the beat plasmon are taken into account in the model. In particular, detuning and dispersion effects are investigated. The achievable plasmon amplitude depends strongly on the collisional damping. At low electron temperatures, the induced beat wave follows the laser pulse and decays rapidly behind it. At high electron temperatures, amplitude modulation appears and an intense slowly decaying plasmon wake can be excited. The wake formation is controllable by varying the pulse length or by detuning the driver slightly off resonance. The amount of electromagnetic cascading is proportional to the plasmon amplitude and the propagation distance of the pulse. The EM spectra offer excellent diagnostics for beat wave experiments, because plasmon amplitude variations are directly reflected in them.

Published in:

Plasma Science, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

April 1987

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.