By Topic

Temporally Resolved Spectroscopy of Laser-Induced Carbon Ablation Plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Temporally resolved emission spectra (360-630 nm) of carbon ablation plasmas produced during laser hole boring by a 25-ns duration 1-J ruby laser pulse are presented. The emitted line radiation originates from, C+++ to C+ depending upon the time relative to the laser pulse. Plasma temperatures of 12-14 eV during the laser pulse to about 4 eV, 140 ns after the laser pulse are obtained by comparing the spectroscopic results to a collisional-radiative equilibrium (CRE) model which bridges the gap between the local thermodynamic equilibrium (LTE) model and the coronal model.

Published in:

Plasma Science, IEEE Transactions on  (Volume:15 ,  Issue: 1 )