By Topic

Hall Effects on Magnetic Relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A generalized vorticity is introduced whose self-linkage (the hybrid helicity) and flux are invariants of ideal incompressible magnetohydrodynamics (MHD) when the Hall term is included. A model of magnetofluid relaxation is constructed for Hall magnetohydrodynamics by assuming that the energy seeks the minimum value compatible with constrained values of magnetic helicity, hybrid helicity, axial magnetic flux, and fluid vorticity flux. As a result of the coupling of magnetic field to fluid vorticity in the generalized vorticity, it is found that the relaxed magnetic-field configuration need not be force free. The presence of a nonvanishing fluid vorticity is shown to be necessary for the existence of relaxed magnetic-field configurations that confine a finite plasma pressure. The study has potential relevance to the dynamics and morphology of space and cosmic plasmas, as well as to pressure confinement and current drive in fusion plasmas.

Published in:

Plasma Science, IEEE Transactions on  (Volume:14 ,  Issue: 6 )