By Topic

Wall Effects on the Propagation of Compressional Alfvén Waves in a Cylindrical Plasma with Two-Ion Species

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The dispersion relations for the compressional Alfvén waves in a two-ion species plasma of deuterium and hydrogen are calculated for a configuration which includes a vacuum layer between the cylindrical plasma and the conducting wall. The presence of the vacuum layer strongly affects the propagation of the compressional Alfvén wave, permitting some branches to propagate and penetrate the plasmacolumn over most frequencies in the ion-cyclotron range. Basic Alfvén-wave propagation and heating experiments in two-ion species consequently should be possible using tokamak and mirror devces with minor radii smaller than the Alfvén wavelength.

Published in:

Plasma Science, IEEE Transactions on  (Volume:13 ,  Issue: 3 )