By Topic

The Transverse Oscillation of Coaxial Multiple Beams Propagating along a Magnetic Field in a Vacuum Tube

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A fluid Maxwell theory has been derived to study a system of multibeams propagating parallel to an applied axial magnetic field in an evacuated conducting drift tube. The stability analysis is performed for a rigid-rotor and cold-laminar flow equilibria. It is assumed that the particle beams are tenuous and the guiding field is very strong. As a result, the perturbation theory is derived under the condition that the plasma frequency is much smaller than the cyclotron frequency for each beam particle. A dispersion relation is obtained for a special case of sharp-boundary density profiles. The stability properties of infinitely long beams are illustrated in detail for different geometries and various beam parameters. The results agree with those obtained by Uhm [8] in a special case where a solid electron beam propagates through an annular electron beam. The finite geometry effect of the accelerator is discussed briefly. It might have a substantial influence on the behavior of a real device.

Published in:

Plasma Science, IEEE Transactions on  (Volume:13 ,  Issue: 2 )