By Topic

Electron-Cyclotron Resonance Heating in Tandem Mirrors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Using numerical ray-tracing techniques, we study the propagation and absorption profiles of electromagnetic waves launched in the end cells of three different tandem mirrots: Phaedrus, an overdense low-temperature tandem mirror with plugs; TASKA, a conceptual tandem mirror with plugs and thermal barrier; and TMX-U, a tandem mirror with a significant hot-electron population. In particular, the effects of weakly relativistic thermal anisotropy on the absorption profile are examined. In general, at sufficiently low densities and temperatures, the X mode can access the plasma and achieve significant heating of the electrons. As the electron temperature increases, the X mode gets quickly absorbed at the edge and only the O mode achieves significant penetration and heating. For sufflciently large launching angles, the presence of thermal anisotropy can actually shift the region of maximum absorption towards the electron-cyclotron resonance layer. Regions of whistler instability appear along rays launched nearly along the machine axis, when the thermal-anisotropy ratio, temperature, and density reach sufficiently high values.

Published in:

Plasma Science, IEEE Transactions on  (Volume:13 ,  Issue: 1 )