By Topic

Polarimetric Measurement of Plasma Poloidal Magnetic Field via Heterodyne Phase Shift Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The rotation of the plane of polarization of radiation propagating through a magnetized plasma (Faraday effect) yields the line integral of the electron density times the longitudinal magnetic field component. A commonly used technique for this measurement senses the change in intensity of a laser beam after passing through a linear polarizer. Two methods often employed to facilitate detection are 1) to mix the transmitted beam with a frequency-offset reference beam to allow heterodyne detection and 2) to oscillate the polarization direction of the laser beam. In addition to being sensitive to spurious amplitude variations, such amplitude measurements are sensitive to small polarization ellipticities introduced by optical components as well as by transverse magnetic fields within the plasma. By the addition of a quarter wave plate, the Faraday rotation can alternatively be sensed as a phase shift of the heterodyne beat of two frequency-offset input beams relative to the case of no plasma. This scheme has the advantage of phase modulation over amplitude modulation, i.e., independence of absolute amplitude and weak dependence on amplitude change. We demonstrate with Jones matrix algebra how the measured phase shift depends only weakly on imperfections and angular alignments of the optical components. Moreover, the phase shifts can be increased more than an order of magnitude by deliberate modifications in the basic optical configuration at a sacrifice of comparable amounts of the amplitude modulation of the carrier from which the phase shift is determined.

Published in:

IEEE Transactions on Plasma Science  (Volume:12 ,  Issue: 4 )