Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Material Studies in a High Energy Spark Gap

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The chemical interactions and physical processes occurring in a high energy spark gap with different combinations of gases, electrodes, and insulators were studied. The electrodes studied were graphite and a tungsten-copper composite; the insulators were Lexan and Blue Nylon; and the gases were N2 and SF6. The gas composition was monitored with a mass spectrometer. Spectroscopic techniques were used to observe the arc channel. The electrode surfaces were studied with several surface analysis techniques, including scanning electron microscopy, electron spectroscopy for chemical analysis, Auger electron spectroscopy, and X-ray fluorescence. The breakdown voltage distribution was examined for different material combinations. The plasma chemistry processes involving the gas, electrode, and insulator materials were found to affect the voltage self-breakdown distribution. The detailed surface analysis gave information about the nature of the chemical processes. The presence of Blue Nylon seemed to have a more adverse effect than Lexan and graphite seemed to have a narrower voltage distribution than the tungsten-copper composite.

Published in:

Plasma Science, IEEE Transactions on  (Volume:10 ,  Issue: 4 )